C.U.SHAH UNIVERSITY Summer Examination-2016

Subject Name:Partial Differential Equations

Subject Code:5SC02MTC2		Branch: M.Sc.(Mathematics)		
Semester: 2	Date:06/05/2016	Time:10:30 To 1:30	Marks: 70	

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the Following questions	(07)		
	a.	Solve: $(D^2 - D')z = 0.$	(02)		
	b.	Find the particular integral of $(D^2 + 2DD' + D'^2)z = \sin(2x + 3y)$.	(02)		
	c.	Classify the partial differential equation $r + 4s + 4t = 0$.	(02)		
	d.	Find the solution of $\frac{\partial^2 z}{\partial x^2} = 0$.	(01)		
Q-2		Attempt all questions	(14)		
	a.	Reduce the equation $r + 2s + t = 0$ to canonical form.	(06)		
	b.	Solve: $(D^3 - 6D^2D' + 11DD'^2 - 6D'^3)z = e^{5x+6y}$.	(05)		
	c.	Eliminate the arbitrary functions f and g from $z = f(x^2 - y) + g(x^2 + y)$.	(03)		
		OR			
Q-2		Attempt all questions	(14)		
	a.	Reduce the equation $4r = t$ to canonical form and hence solve it.	(06)		
	b.	Solve: $r - t = x - y$.	(05)		
	c.	Eliminate the arbitrary functions f and F from $y = f(x - at) + F(x + at)$.	(03)		
Q-3		Attempt all questions	(14)		
	a.	Find the particular integral of $(D^2 - D'^2 + D - D')z = e^y(x - 1)$.	(05)		
	b.	Solve: $x^2r + 2xys + y^2t = 0.$	(05)		
	c.	Solve: $(D^3 + 3D^2D' - 4D'^3)z = 0.$	(04)		
OR					
Q-3		Attempt all questions	(14)		
	a.	Solve the equation $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ by the method of separation of variables.	(05)		
	b.	Solve: $r + s - 6t = y \cos x$.	(05)		
	c.	Prove that $F(D, D')e^{ax+by} = F(a, b)e^{ax+by}$, where a and b are constants.	(04)		

Page 1 || 2

		SECTION – II	
Q-4		Attempt the Following questions	(07)
	a.	What is equipotential surface?	(02)
	b.	Write Dirichlet problem for a Circle.	(02)
	c.	Write the general form of equation for which the method of changing variable $u = \log x$, $v = \log y$ can apply.	(02)
	d.	$u = x^2 - y^2$ is solution of two dimension Laplace equation. State whether the statement is true or false?	(01)
Q-5		Attempt all questions	(14)
-	a.	In usual notation, prove that $\frac{\partial^2 u}{\partial u^2} + \frac{1}{2} \frac{\partial u}{\partial u} + \frac{1}{2} \frac{\partial^2 u}{\partial u^2} = 0.$	(07)
	b.	Using Monge's method, solve the equation $x(r + 2xs + x^2t) = p + 2x^3$.	(07)
		OR	
Q-5		Attempt all questions	(14)
	a.	Classify and Reduce the equation $r^2 + y^2 t = y$ to canonical form.	(07)
	b.	State and prove Harnack's theorem.	(07)
Q-6		Attempt all questions	(14)
	a.	Using Monge's method, solve the equation $r - t = 0$.	(07)
	b.	Show that the solution of three dimensional wave equation $\nabla^2 u = \left(\frac{1}{c^2}\right) \left(\frac{\partial^2 u}{\partial t^2}\right)$ can	(07)
		be put in the form $e^{\pm i(lx+my+nz+kct)}$, provided $k^2 = l^2 + m^2 + n^2$.	
		OR	
Q-6		Attempt all Questions	
	a.	Using Monge's method, solve the equation $3r + 4s + t + (rt - s^2) = 1$.	(07)

b. Find general solution of heat equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{\partial t}$ by the method of separation of variables. (07)

